Abstract

The long‐term operation of polymer electrolyte membrane fuel cells (PEMFCs) relies heavily on the durability of the perfluorinated sulfonic acid (PFSA, e.g., Nafion) membrane against chemical and mechanical degradation. To mitigate mechanical degradation, the introduction of a reinforcing matrix, such as a porous PTFE sheet, is employed. However, completely impregnating the PFSA ionomer into the PTFE sheet through the conventional blade‐coating method using a highly viscous ionomer solution proves challenging. This limitation results in decreased mechanical and proton transport properties. To reduce proton transport resistance, thinner membrane thickness is desirable, although it increases the amount of gas crossover, which generates radicals and accelerates the chemical degradation of the membrane. In this study, a spraying process utilizing a low viscous‐solvent‐rich ionomer solution is experimentally optimized to construct a well‐impregnated PTFE/Nafion membrane and analyzed using a simple theoretical droplet‐spreading model. Furthermore, an ultrathin graphene oxide (GO) layer is introduced during the membrane fabrication process with the same spraying technique for reducing gas crossover while minimizing performance loss. The membrane electrode assembly (MEA) with the prepared PTFE/Nafion membrane‐incorporated ultrathin GO layer shows significantly greater durability and initial performance compared to the conventional MEA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.