Abstract

Chiral nanomaterials with different functions have been widely developed, but the deep understanding of the structural effects of nanocatalysts on enantioselective photocatalytic efficiency is still highly demanded. Herein, Pt and Pt-Au-bimetal-doped chiral nanostructures with various morphologies and compositions are facilely constructed using L-/D-arginine (L-/D-Arg) and mono-sulfonate tetraphenyl porphyrin (H2TPPS) assemblies as chiral templates. Interestingly, these Pt and Pt-Au-doped chiral nanostructures, including nanorods (NR) and nanospheres (NS), can be well regulated by controlling pH, ionic strength, and reaction time of the assembling system of Arg and H2TPPS. More impressively, specific Au growth direction along the Pt-doped chiral NR (L-/D-Pt-NR) is observed (from tip to middle) during the preparation of Pt-Au-bimetal-doped chiral NR (L-/D-Pt-Au-NR) and their compositions can be finely controlled by simply adjusting the concentrations of HAuCl4. As expected, the chiral nanostructures exhibit superior enantioselective photocatalytic ability toward chiral organics under visible light: the oxidation rate of L-dihydroxy-phenylalanine (L-DOPA) catalyzed by L-Pt-NR (or D-DOPA catalyzed by D-Pt-NR) is about 60% higher than that of L-DOPA catalyzed by D-Pt-NR (or L-DOPA catalyzed by D-Pt-NR). This study provides a facile strategy to construct chiral nanostructures for the photocatalytic conversion of chiral organics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.