Abstract

The FCAW process used filler metal E71T-11 of Ø0.035” to apply fillet welds with a size of ~4mm on T-joints made of ASTM A36 steel, in a horizontal position, using 42 appropriate combinations of wire feed speeds -WFS- (between 50 and 540 ipm), voltages (13-33V) and welding speeds (4.2-24.5 ipm). The test welds applied with each combination were inspected visually and by macro-attack to establish their compliance with the acceptance criteria for naval panels provided by the American Bureau of Shipping - ABS. With these results, Voltage vs. WFS, Voltage vs. Amperage and Heat Input vs. WFS graphs were constructed, and productivity windows were drawn over them including the combinations of welding parameters capable of producing welds of acceptable quality. The productivity windows obtained with this method, called ARCWISE, allow proper welding parameters to be selected during the design of WPSs avoiding iterative processes of trial and error.

Highlights

  • Introduction and justificationAn efficient design of steel or aluminum naval vessels aims, among other factors, to satisfy the criterion of reducing the weight of these structures by leveraging the advantages offered by the panels from the point of view of rigidity, moment of inertia and construction facilities

  • The methodology followed in this work is based on the experimental strategy known as "ARCWISE", which is based on a volume balance between the input of filler material delivered by a welding process (GMAW, FCAW, SAW) applied under specific parameters and the material that is deposited in the weldment

  • Welds Part 2 of American Bureau of Shipping (ABS) (ABS, 2016), establish in Chapter 4 "Welding and Fabrication”, Section 1 "Hull Construction”, paragraph 5.17 “Inspection of Welds” that the inspected welds must be evaluated according to the acceptance criteria given in the ABS Guide for the Nondestructive Inspection of Hull Welds (ABS, 2018) which, in its paragraph 1.3 "Visual Inspection of Welds" establishes that the acceptance criteria are indicated in the Section 10 "Acceptance Criteria For Hull Welds" paragraph 5 "Evaluation from Visual Inspection (VT), Magnetic Inspection (MT) and Liquid Penetrant Inspection (PT).”

Read more

Summary

Introduction

An efficient design of steel or aluminum naval vessels aims, among other factors, to satisfy the criterion of reducing the weight of these structures by leveraging the advantages offered by the panels from the point of view of rigidity, moment of inertia and construction facilities. A structural panel can be described as a relatively thin plate with a network of stiffeners that increase their moment of inertia, rigidity and ability to withstand loads reducing the use of building materials (Blodgett, 1966). A panel can be flat (decks, tanks) or with a complex geometry (hulls, superstructures, bottoms or innerand-outer bottoms) and the stiffeners can be profiles of different cross sections such as angles, “Ts”, “Is” or bulbs, which offers to the naval architects a wide variety of design alternatives for the construction of the various components of boats such as hulls, decks, bulkheads, bottoms, fuel, water and ballast storage tanks, etc. Panel distortion control strategies can be grouped into: (1) design-related variables: use of design practices that facilitate the production of distortion-free panels, such as plates with the appropriate thickness, reduction of spacing between stiffeners, beveled T-joints, optimized assembly sequences, etc.; and (2) process-related variables: better control of certain welding variables that eliminate the conditions that promote distortion, such as the reduction of weld sizes and lengths, use of high welding speeds, the use of welding processes with low heat inputs, back-step techniques, proper welding sequences, controlled preheating, restriction fixturing, etc. (C.L. Tsai, 1999)

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call