Abstract
In order to quantitatively evaluate the competence of primary and secondary school teachers, a competency model of primary and secondary school teachers based on an improved machine learning algorithm is proposed. The fitting parameter analysis model of primary and secondary school teachers’ competency is constructed, and the fitting benefit degree parameter of primary and secondary school teachers’ competency is extracted based on the analysis results of reliability index parameters. The improved machine learning algorithm is used to carry out quantitative analysis and characteristic element analysis in the process of primary and secondary school teachers’ competency evaluation and determine the competency elements of the model. According to the machine learning model, the competency elements are conceptualized and classified, and the theoretical parameter analysis model of online teaching competency of primary and secondary school teachers is constructed to realize the assessment and quantitative analysis of primary and secondary school teachers’ competency. Factor analysis and reliability tests were performed using the KMO test and Bartlett test. The empirical simulation analysis results show that the reliability and accuracy of the evaluation of primary and secondary school teachers’ competence by this method are good, and the level of credibility is high.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.