Abstract

The composite photocatalyst of precious metal loaded on BiOI (M/BiOI, M = Pt, Au, Ag) was prepared by photochemical deposition and used for the photocatalytic degradation of microcystins (MC-LR). The material was characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet visible (UV-vis) diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), and photoluminescence spectra (PL). The effect of photodegradation of MC-LR and the possible mechanism were investigated. It turned out that, among precious metals of Pt, Au, and Ag, Ag had the most significant improvement for photocatalytic activity of BiOI and Au was the least. The Ag/BiOI catalyst was illuminated 2h under the simulated visible-light condition with the optimal load ratio of Ag catalyst (1.0wt%) and the 2-h illumination under simulated visible-light condition, the degradation rate of MC-LR was 61.26% ± 0.12%. In addition, through the experiment of trapping agent and the analysis of electron spin resonance (ESR), we could conclude that the main active species is O2- in the process of the degradation of MC-LR by three precious metal-loaded BiOI semiconductor materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call