Abstract

The creation of a phase junction structure in photocatalysts is a wise approach to promote photocatalytic performance, as phase junctions possess the potential to inhibit the recombination of photoinduced charge carriers. Here, Bi4V2O11 nanofibers with an α-β phase junction are fabricated via electrospinning with subsequent calcination. Electrospinning offers the opportunity to keep α-Bi4V2O11 from transforming into β-Bi4V2O11 completely due to an electrospinning retardation effect, leading to the formation of an α-β Bi4V2O11 phase junction. Furthermore, the α-β Bi4V2O11 phase junction realizes a well-established type-II band alignment. Photoelectrochemical measurements and photoluminescence spectroscopic investigations demonstrate that the phase junction structure has a significant impact on the separation and transfer of photogenerated electrons and holes. Thus, the α-β phase junction on Bi4V2O11 holds the key to achieving promoted efficiency in the photocatalysis process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call