Abstract

The high cost and easy denaturation of natural enzymes under environmental conditions hinder their practical usefulness in sensing devices. In this study, peroxidase (POD)-like metal-organic frameworks (MOFs) were in situ grown in the nanochannels of an anodized TiO2 membrane (TiO2NM) as an electrochemical platform for multitarget sensing. By directly using a nanochannel wall as the precursor of metal nodes, Ti-MOFs were in situ derived on the nanochannel wall. Benefitting from the presence of bipyridine groups on the ligands, the MOFs in the nanochannels provide plenty of sites for Fe3+ anchoring, thus endowing the resulting membrane (named as Fe3+:MOFs/TiO2NM) with remarkable POD-like activity. Such Fe3+-induced POD-like activity is very sensitive to thiol-containing molecules owing to the strong coordination effect of thiols on Fe3+. Most importantly, the POD-like activity of nanochannels can be in situ characterized by the current-potential (I-V) properties via catalyzing the oxidation of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) substrate to the corresponding positively charged product ABTS•+. As a proof-of-concept application, the free-standing POD-like membranes were applied as a label-free assay in sensing cysteine, as well as monitoring acetylcholinesterase (AChE) activity through the generated thiol-containing product. Furthermore, based on the toxicity effect of organophosphorus (OP) compounds on AChE, the robust membranes were successfully utilized to evaluate the toxicity of diverse OP compounds. The POD-like nanochannels open up an innovative way to expand the application of nanochannel-based electrochemical sensing platforms in drug inspection, food safety, and environmental pollution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call