Abstract

To simultaneously enhance the catalytic activity of Pd and lower its dosage, we report a Pd/Co-MOF nanosheets/Ni foam electrode (Pd/Co-MNSs/Ni foam) with conductive 2D MOF nanosheets as interlayer for electrocatalytic hydrodechlorination (ECH). Such electrode delivers high ECH activity for nearly complete dechlorination (~97%) of chloramphenicol (CAP) with an apparent rate constant of 0.11 min−1, outcompeting the well-reported and the commercial electrode materials. Pd/Co-MNSs/Ni foam maintains its activity after 9 consecutive runs and 5-day exposure to air, and shows rapid degradation kinetics for other priority contaminants. The formation of Pd/Co-MNSs heterojunction interface increases the electron density of metallic Pd and brings the d states closer to Fermi level than Pd alone, thus optimizing the binding of ECH intermediates. This support construction-based strategy tunes the interface of catalytic electrode to expose active sites and modulate the electronic states of catalyst to promote intrinsic activity, boosting electroreductive remediation of organic halides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call