Abstract

A block code is called a locally recoverable code (LRC for short) with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(r,\delta)$ </tex-math></inline-formula> -locality, if subject to any <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\delta -1$ </tex-math></inline-formula> erasure failures, every symbol in the encoding can still be recovered by accessing at most <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$r$ </tex-math></inline-formula> other symbols. Recently, it was discovered by several authors that a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> -ary optimal <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(r,\delta)$ </tex-math></inline-formula> -LRC, i.e., an LRC achieving the generalized Singleton-type bound, can have length much bigger than <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q+1$ </tex-math></inline-formula> . This is quite different from the classical <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> -ary MDS codes where it is conjectured that the code length is upper bounded by <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q+1$ </tex-math></inline-formula> (or <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q+2$ </tex-math></inline-formula> for some special cases). In this paper, we further investigate constructions of optimal <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(r,\delta)$ </tex-math></inline-formula> -LRCs along the line of using parity-check matrices. Inspired by classical Reed-Solomon codes and the work in Jin (2019), we equip parity-check matrices with the Vandermonde structure. It turns out that a parity-check matrix with the Vandermonde structure that produces an optimal LRC must obey certain disjoint property for subsets of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbb {F}_{q}$ </tex-math></inline-formula> . We manage to show the existence of these disjoint subsets. Thus, this yields an optimal <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(r,\delta)$ </tex-math></inline-formula> -LRC with code length <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Omega \left({q^{\frac {\delta }{2}\left({1+\frac {1}{\lfloor \frac {d-1}{\delta }\rfloor -1}}\right)}}\right)\vphantom {\bigg)_{j}}$ </tex-math></inline-formula> , where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula> is the minimum distance. In particular, to our surprise, for <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\delta =2$ </tex-math></inline-formula> this disjoint condition is equivalent to a well-studied problem in extremal graph theory. With the help of extremal graph theory, we succeed to improve all of the best known results in Guruswami <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">et al.</i> (2018) for <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$d\geq 7$ </tex-math></inline-formula> . In addition, for <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$d=6$ </tex-math></inline-formula> , we are able to remove the constraint required in Jin (2019) that <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> is even.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call