Abstract

Electromagnetic wave (EMW) absorption materials with high efficiency and simple preparation process are highly desirable for practical applications. However, there are still many obstacles to simultaneously satisfy the practical requirements. Herein, fly ash cenospheres (FACs), solid waste from power plants, were selected as a framework to prepare OH-functionalized multi-walled carbon nanotube (MWCNT)/FAC hybrids with multilayer, connected and porous architectures via a facile physical mixing process for the first time. Accordingly, a novel tubular/spherical model for EMW absorption materials was established. The effect of the unique heterostructure, which possessed multiple interfaces, on the EMW absorption property was studied. The results indicated that this structure is conducive to extending the transmission route, adjusting the conductivity and improving the dielectric loss. Thus, the composite showed an excellent EMW absorption performance. The minimum reflection loss of −44.67 dB occurs at 4.9 GHz and the effective bandwidth below −10 dB (90% attenuation of EMW) could shift from 4.1 to 19.2 GHz with a thickness in the range of 1.5–5.5 mm. The superior absorption property is mostly attributed to the synergistic effect of good impedance matching, multiple loss mechanisms, and multiple reflections and scatterings. Thus, this product meets the requirement of high absorption performance and simple preparation, which greatly enhance its applicability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.