Abstract

The high recombination rates of photogenerated electron-holes significant inhibit the catalytic activity of semiconductor photocatalysts. In this study, novel polythiophene (PTh)/BiOBr hybrids were successfully synthesized using an effortless method to achieve the degradation of Bisphenol A (BPA). According to the results, the introduction of polythiophene (PTh) significantly improved the separation efficiency of photocharge carriers, thus enhancing the photocatalytic activity of PTh-BiOBr. The X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectrometer were applied to characterize the samples structure and light absorption properties. The degradation properties of BPA of materials under visible light prove that the photocatalytic capabilities of the complex can be improved significantly compared to BiOBr monomers, thus confirming the above-mentioned hypothesis. Under the same experimental conditions, 0.5% PTh-BiOBr was obtained for the optimal compound, and the degradation efficiency of BPA after 100 min of visible light was 83%, which is 34% higher than that of the BiOBr monomer. In the process of photocatalytic degradation of BPA by the catalyst, the active free radicals of the catalyst were obtained by ESR and free radical capture experiment, while a possible photocatalytic degradation mechanism was proposed on this basis. From O2, the •O2– plays a major role in the process of photo-react degradation of BPA, while h+ and •OH play a part. This work provides a more eco-friendly and efficient way for BiOBr retouching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call