Abstract
Optical thermometry based on fluorescence intensity ratio (FIR) technology has several advantages for industrial and medical applications such as remote signaling, non-invasiveness, and excellent spatial resolution. Here, an approach to the construction of luminescent thermometers is proposed based on high-temperature solid-state reactions through doping of rare earth (RE) elements (e.g., samarium (Sm3+) or europium (Eu3+)) into Ca2Y0.97Bi0.03SbO6 (CYBS) phosphors. The tuning of the CYBS:Eu3+ and CYBS:Sm3+ ratios in the phosphors provided a wide range of color changes from purplish blue to red and from purplish blue to pink, respectively. The superiority of optical thermometer is validated by higher values of absolute sensitivity (Sa) and relative sensitivity (Sr). As such, both phosphors exhibit excellent temperature sensing performance with Sa/Sr values (at 483K) of 4.945×10-2/0.968×10-2K-1 (CYBS:0.05Eu3+) and 2.964×10-2/0.864×10-2K-1 (CYBS:0.05Sm3+). Thus, RE-doped CYBS materials with color tuning properties and superior temperature sensing performance are recommended for the construction of novel luminescent optical thermometers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.