Abstract

In the field of implantable medical devices, the antibacterial extracellular matrix (ECM) biologic scaffold, which is constructed by modifying biomaterials with antibacterial peptides, has excellent potential. An antibacterial peptide–modified ECM scaffold was formed with chitosan (CS), antimicrobial peptide (AMP), and ECM scaffold. Chitosan has a firm positive-charge surface and can combine with the ECM scaffold material to form a positive-charge layer on the surface. The surface potential was characterized using a surface potential map. Infrared spectroscopy and scanning electron microscopy (SEM) were used to observe the scaffold surface characteristics and cell morphology. Fluorescence staining and MTS assay kit were used to assess cytotoxicity and biocompatibility. To evaluate the antibacterial and repairing effects on the infected wounds in vivo, a subcutaneous antibacterial test of rabbit back was conducted. The antibacterial peptide–modified ECM scaffold was successfully formed and presented an excellent three-dimensional micro-surface porous structure. The antibacterial peptide–modified ECM scaffold could be effectively-prepared by surface modification and activation. Fluorescence staining tests showed good cell adhesion, proliferation ability, and cell affinity. The in vivo experiment indicated that the antibacterial ECM scaffold had antibacterial and healing-promotion abilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call