Abstract

We propose a new coarse-grained (CG) molecular simulation technique based on the Mori-Zwanzig (MZ) formalism along with the iterative Boltzmann inversion (IBI). Non-Markovian dissipative particle dynamics (NMDPD) taking into account memory effects is derived in a pairwise interaction form from the MZ-guided generalized Langevin equation. It is based on the introduction of auxiliary variables that allow for the replacement of a non-Markovian equation with a Markovian one in a higher dimensional space. We demonstrate that the NMDPD model exploiting MZ-guided memory kernels can successfully reproduce the dynamic properties such as the mean square displacement and velocity autocorrelation function of a Lennard-Jones system, as long as the memory kernels are appropriately evaluated based on the Volterra integral equation using the force-velocity and velocity-velocity correlations. Furthermore, we find that the IBI correction of a pair CG potential significantly improves the representation of static properties characterized by a radial distribution function and pressure, while it has little influence on the dynamic processes. Our findings suggest that combining the advantages of both the MZ formalism and IBI leads to an accurate representation of both the static and dynamic properties of microscopic systems that exhibit non-Markovian behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call