Abstract

This paper presents two algebraic methods for constructing high performance and efficiently encodable nonbinary quasi-cyclic LDPC codes based on arrays of special circulant permutation matrices and multi-fold array dispersions. Codes constructed based on these methods perform well over the AWGN and other types of channels with iterative decoding based on belief-propagation. Experimental results show that over the AWGN channel, these non-binary quasi-cyclic LDPC codes significantly outperform Reed-Solomon codes of the same lengths and rates decoded with either algebraic hard-decision Berlekamp-Massey algorithm or algebraic soft-decision Kötter- Vardy algorithm. Also presented in this paper is a class of asymptotically optimal LDPC codes for correcting bursts of erasures. Codes constructed also perform well over flat fading channels. Non-binary quasi-cyclic LDPC codes have a great potential to replace Reed-Solomon codes in some applications in communication environments and storage systems for combating mixed types of noises and interferences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call