Abstract

Despite great efforts over the past decade, rational design of bifunctional electrocatalysts with low cost and high efficiency still remains a challenge to achieve industrial water splitting. Herein, we synthesized the nickel-molybdenum nanorod array catalyst supported on NF (NMO@NM/MO) by a two-step process of hydrothermal and reductive annealing. Partial reduction of the NiMoO4 induces the structural reconstruction and formation of the Ni4Mo/MoO2 heterostructure on oxygen vacancy enriched nanorod, which bring out sufficient active sites, large specific surface area and favorable interfacial charge transfer. Thanks to the unique core–shell structure with the heterostructured Ni4Mo/MoO2 surface and defect-rich NiMoO4 core, the obtained electrocatalyst shows greatly improved hydrogen evolution reaction (HER) activity with an ultralow overpotential of 63 mV at 100 mA cm−2 (vs. 314 mV for the NiMoO4). Density function theory calculations reveal that the construction of the Ni4Mo/MoO2 heterostructure effectively accelerates H2O dissociation kinetics, while the defective NiMoO4 facilitates H* adsorption/desorption. Moreover, the heterostructure catalyst also displays excellent oxygen evolution reaction (OER) performance with the low overpotential of 274 mV at 100 mA cm−2. When coupling HER and OER by using NMO@NM/MO as both the cathode and anode, the alkaline electrolyzer delivers a current density of 10 mA cm−2 at only 1.50 V as well as good robustness. The synergistic effect of the hetero-interface and the defect engineering endows the electrocatalyst with excellent bifunctional catalytic activity for HER and OER. This work may provide a route for rational design of heterostructure electrocatalysts with multiple active components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call