Abstract
The addition theorems of Slater type orbitals (STOs) presented in literature are generally complicated to theoretically examine the electronic structure of atoms and molecules. The computational deficiencies in use of these theorems arise from the separation of integral variables. In this work, to eliminate these calculation efforts, a large number of independent one-range addition theorems for $$\chi $$ -noninteger Slater type orbitals ( $$\chi $$ -NISTOs) in terms of $$\chi $$ -integer STOs ( $$\chi $$ -ISTOs) is presented by using complete orthogonal basis sets of $${{L}^{{(p_{l}^{*})}}}$$ -self-friction (SF) polynomials ( $${{L}^{{(p_{l}^{*})}}}$$ -SFPs), $${{\psi }^{{(p_{l}^{*})}}}$$ -SF exponential type orbitals ( $${{\psi }^{{(p_{l}^{*})}}}$$ -SFETOs), $${{L}^{{(\alpha \text{*})}}}$$ -modified SFPs ( $${{L}^{{(\alpha \text{*})}}}$$ -MSFPs), and $${{\psi }^{{(\alpha \text{*})}}}$$ -modified SFETOs ( $${{\psi }^{{(\alpha \text{*})}}}$$ -MSFETOs) introduced by one of the authors. Here, $$p_{l}^{*} = 2l + 2 - \alpha \text{*}$$ and $$\alpha \text{*}$$ are the integer $$(\alpha \text{*} = \alpha ,\; - {\kern 1pt} \infty < \alpha \leqslant 2)$$ or noninteger ( $$\alpha \text{*} \ne \alpha ,$$ $$ - \infty < \alpha < 3$$ ) SF quantum numbers based on the Lorentz damping theory. The expansion coefficients of series for the one-range addition theorems are expressed through the analytical relations for the overlap integrals of $$\chi $$ -NISTOs with the same screening parameters. As an application, the calculations of overlap integrals with the different screening constants of $$\chi $$ -NISTOs are performed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.