Abstract

Organic nanostructured electrodes are very attractive for next-generation sodium-ion batteries. Their great advantages in improved electron and ion transport and more exposed redox-active sites would lead to a higher actual capacity and enhanced rate performance. However, facile and cost-effective methods for the fabrication of nanostructured organic electrodes are still highly challenging and very rare. In this work, we utilize a bioinspired self-assembly strategy to fabricate nanostructured cathodes based on a rationally designed N-hydroxy naphthalene imide sodium salt (NDI-ONa) for high-performance sodium-organic batteries. Such a well-organized nanostructure can greatly enhance both ion and electron transport. When used as cathode for sodium-organic batteries, it provides among the best battery performances, such as high capacity (171 mA h g-1 at 0.05 A g-1), excellent rate performance (153 mA h g-1 at 5.0 A g-1), and ultralong cycling life (93% capacity retention after 20000 cycles at 3.0 A g-1). Even at low temperature or without a conductive additive, it can also perform well. It is believed that self-assembly is a very powerful strategy to construct high-performance nanostructured electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.