Abstract

Micro/nanomotors (MNMs) are miniaturized devices capable of performing self-propelled motion and on-demand tasks, which have brought revolutionary renovations in nanomedicine, environmental remediation, biochemical sensing, etc. Numerous methods of either chemical synthesis or physical fabrications have been extensively investigated to prepare MNMs of various shapes and functions. However, MNMs with replaceable engines that can be flexibly assembled and disassembled, resembling that of a macroscopic machine, have not been achieved. Here, for the first time, we report a demonstration of control over the engine replacement of self-propelled nanomotors based on hollow mesoporous silica nanoparticles (HMSNPs) via supramolecular machine-based host-guest assembly and disassembly between azobenzene (Azo) and β-cyclodextrin (β-CD). Nanomotors with different driving mechanisms can be rapidly constructed by selecting corresponding β-CD-modified nanoengines of urease, Pt, or Fe3O4, to assemble with the azobenzene-modified HMSNPs (HMSNPs-Azo). In virtue of photoresponsive cis/trans isomer conversion of azobenzene molecules, engine switching can be accomplished by remote light triggered host-guest assembly or disassembly between HMSNPs-Azo and β-CD-modified engines. Moreover, this method can quickly include multiple engines on the surface of the HMSNPs-Azo to prepare a hybrid MNM with enhanced motion capability. This strategy not only is cost-effective for the rapid and convenient preparation of nanomotors with different propulsion mechanism but also paves a new path to future multiple functionalization of MNMs for on-demand task assignment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.