Abstract

Alkaline hydrogen evolution reaction (HER) is suppressed by the water dissociation, leading to more sluggish kinetics than acidic HER. Developing multifunction catalysts via constructing heterogeneous interfaces is a feasible tactic to accelerate the alkaline HER. Herein, NiO coupled with Ni and MoxN (NMN) nanorods were prepared via a hydro-thermal synthesis combined with a thermal decomposition under ammonia atmosphere. The low crystalline NMN nanorods are rich in heterointerfaces, and have sufficient high active sites for HER. The synergistic effect between NiO and Ni-MoxN promotes the water dissociation the hydrogen adsorption, and the charge transfer, contributing to excellent alkaline HER activity. The overpotential on NMN is only 36 and 150 mV for the current density of 10 and 300 mA cm−2, respectively, and the Tafel slope is 48 mV/dec, demonstrating a superior performance for alkaline HER, which is even comparable to the commercial electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.