Abstract

This paper proposes a novel method of magnetically guided assembly to construct multi-layer porous scaffold for three-dimensional cell culture by apply magnetic microfibers. Microfibers are composed of biocompatible and biodegradable alginate solution with homogeneous magnetic nanoparticles, which are continuously spun from a microfluidic device by precise pressure control of the syringe pump. Magnetic nanoparticles enable the control of magnetic field on microfibers. Meanwhile, magnetized device combining with a round permanent magnet are utilized to guide the distribution of spouted microfibers. The device is composed by pure iron wire arrays and wax, which stimulates powerful magnetic flux density and magnetic field gradients for the capture and assembly of microfibers. Thus, magnetic microfibers are spun on desired places of the magnetized device by motion control of the micromanipulation robot, and precise locations are adjusted by magnetic force couple with the assist of glass micropipette. Afterwards, microfibers are spatially organized by periodic magnetic force and crossed layer-by-layer to form micro-pore structure with both length and width of 650 μm. Finally, the authors construct a multilayer microfiber-based scaffold with high porosity to provide a satisfactory environment for long-term cell culture. The experimental results demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call