Abstract
This study reports a design of a variety of nanostructured films of 2D oxide nanosheets. We systematically examined the deposition of perovskite-type Ca2Nb3O10- nanosheets by spin-coating their dimethyl sulfoxide dispersion. Neat and homogeneous monolayer tiling was attained on various substrates by selecting an optimum rotation speed, which was dependent on the nanosheet concentration. Repeating the optimized spin-coating process allowed for layer-by-layer deposition of the nanosheets into multilayer films with a designed layer number. Vertical superlattice heterostructures could also be assembled by alternately spin-coating the suspensions of Ca2Nb3O10- and Ti0.87O20.52- nanosheets. Furthermore, spin-coating of a mixed suspension of Ca2Nb3O10- and Ti0.87O20.52- nanosheets led to a mixed mosaic-like monolayer of these two nanosheets. The present study thus demonstrated spin-coating as a facile and powerful route to construct various nanostructures based on 2D oxide nanosheets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.