Abstract

An approach is introduced to determine the topology of a feedforward binary neural network automatically. The approach is based on a construction algorithm that constructs one layer of hidden nodes at a time until the problem is solved. In each layer, the algorithm determines the necessary number of nodes through a growth process by finding the best hidden node that would help to partition the input training data set. This is done using a genetic algorithm. The proposed algorithm can determine the necessary number of hidden layers and number of hidden nodes at each layer automatically. Tests on a number of benchmark problems illustrated the effectiveness of the proposed technique, both in terms of network complexity and recognition accuracy, compared with a geometrical learning approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.