Abstract

Metal-organic frameworks (MOFs) with multifunctional and tunable optical properties have unique advantages in the field of sensing, and the structure and properties of MOFs are significantly influenced by the ligands. In this study, a Y-type tricarboxylic acid ligand containing amide bonds was synthesized through functional guidance, and three isomorphic and heterogeneous three-dimensional MOFs (Eu-MOF, Tb-MOF, and Gd-MOF) were obtained by solvothermal reaction. Further studies revealed that both the Tb-MOF and Eu-MOF could selectively detect picric acid (PA). The luminescence quenching of the two MOFs by PA was attributed to competing absorption and photoelectron energy transfer mechanisms. In addition, due to the energy transfer between Tb and Rhodamine B, Rhodamine B was encapsulated into Tb-MOF. The obtained material exhibited a linear relationship between the temperature parameters I544/I584 and temperature within the range of 280-400 K, the correlation coefficient (R2) reached an impressive value of 0.999, and the absolute sensitivity of the sample used for temperature sensing was 1.534% K-1. What is more, the material exhibited a good response to trifluoroacetic acid vapor, which suggests the potential of the material for temperature sensing and detection of trifluoroacetic acid vapor. The designed and investigated strategy can also serve as a reference for further research on excellent multifunctional sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call