Abstract
A Monte Carlo approach for investigating the dynamics of quiescent collisional magnetoplasmas is presented, based on the discretization of the gyrokinetic equation. The theory applies to a strongly rotating multispecies plasma, in a toroidally axisymmetric configuration. Expressions of the Monte Carlo collision operators are obtained for general v-space nonorthogonal coordinates systems, in terms of approximate solutions of the discretized gyrokinetic equation. Basic features of the Monte Carlo operators are that they fullfill all the required conservation laws, i.e., linear momentum and kinetic energy conservation, and in addition that they take into account correctly also off-diagonal diffusion coefficients. The present operators are thus potentially useful for describing the dynamics of a multispecies toroidal magnetoplasma. In particular, strict ambipolarity of particle fluxes is ensured automatically in the limit of small departures of the unperturbed particle trajectories from some initial axisymmetric toroidal magnetic surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.