Abstract

Hybrid nanomaterials with controllable structures and diverting components have attracted significant interest in the functional materials field. Here, we develop a solvent evaporation-induced self-assembly (EISA) strategy to synthesize nanosheet-assembled phosphomolybdic acid (H3PMo)-alumina hybrid hollow spheres. The resulting nanoflowers display a high surface area (up to 697 m2 g-1), adjustable diameter, high chemical/thermal stability, and especially molecularly dispersed H3PMo species. By employing various microscopic and spectroscopic techniques, the formation mechanism is elucidated, revealing the simultaneous control of the morphology by heteropoly acids and water through the water-induced Kirkendall effect. The versatility of the synthesis method is demonstrated by varying surfactants, heteropoly acids, and metal oxide precursors for the facile synthesis of hybrid metal oxides. Spherical hybrid alumina serves as an attractive support material for constructing metal-acid bifunctional catalysts owing to its advantageous surface area, acidity, and mesoporous microenvironment. Pt-loaded hollow flowers exhibit excellent catalytic performance and exceptional stability in the hydrodeoxygenation of vanillin with recyclability for up to 10 cycles. This research presents an innovative strategy for the controllable synthesis of hybrid metal oxide nanospheres and hollow nanoflowers, providing a multifunctional platform for diverse applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.