Abstract

The MnO2/Micro-nano Ni-filled Ni foam (MNFNF) hybrids were systematically studied as supercapacitor electrodes. Micro-nano Ni-filled Ni foam (MNFNF) was prepared via a facile NiC2O4·2H2O coating process on foam, followed by sintering treatment, and then employed as substrate for electrodeposition of MnO2. The morphology of the MNFNF substrate exhibited an obviously second-porous structure, deriving from dehydration, decarboxylation, and the lattice contraction occurred in the sintering treatment process of NiC2O4·2H2O. The structure of pores was irregular with 0.05~2 μm in diameter, and the pore walls were composed of nanoparticles with 200~500 nm in diameter. Such porous MNFNF not only provided a conductive network to enhance the charge transport and mass transfer in the electrochemical process but also achieved a large MnO2 mass loading capacity. Electrochemical test showed the MnO2/MNFNF electrode exhibited a mass specific capacitance (SC) of 723.7 F g−1 and an areal specific capacitance of 1.16 F cm−2 at a current rate of 0.25 A g−1. The asymmetric supercapacitor device based on the MnO2/MNFNF electrode and active carbon electrode could supply an energy density of 24.5 Wh kg−1 at the maximum power density of 4.4 kW kg−1. Meanwhile, the supercapacitor device also exhibited a good cycling stability along with 93.2% specific capacitance retained after 5000 cycles. These results demonstrated that the MnO2/MNFNF electrode could be one of the potential electrode material for energy storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.