Abstract
In most shape optimization problems, the optimal solution does not belong to the set of genuine shapes but is a composite structure. The homogenization method consists in relaxing the original problem thereby extending the set of admissible structures to composite shapes. From the numerical viewpoint, an important asset of the homogenization method with respect to traditional geometrical optimization is that the computed optimal shape is quite independent from the initial guess (at least for the compliance minimization problem). Nevertheless, the optimal shape being a composite, a post-treatement is needed in order to produce an almost optimal non-composite (i.e. workable) shape. The classical approach consists in penalizing the intermediate densities of material, but the obtained result deeply depends on the underlying mesh used and the level of details is not controllable. In a previous work, we proposed a new post-treatement method for the compliance minimization problem of an elastic structure. The main idea is to approximate the optimal composite shape with a locally periodic composite and to build a sequence of genuine shapes converging toward this composite structure. This method allows us to balance the level of details of the final shape and its optimality. Nevertheless, it was restricted to particular optimal shapes, depending on the topological structure of the lattice describing the arrangement of the holes of the composite. In this article, we lift this restriction in order to extend our method to any optimal composite structure for the compliance minimization problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.