Abstract

The fascinating characters of minimal surface make it to be widely used in shape design. While the flexibility and high quality of subdivision surface make it a powerful mathematical tool for shape representation. In this paper, we construct minimal subdivision surfaces with given boundaries using the mean curvature flow, a second order geometric partial differential equation. This equation is solved by a finite element method where the finite element space is spanned by the limit functions of an extended Loop’s subdivision scheme proposed by Biermann et al. Using this extended Loop’s subdivision scheme we can treat a surface with boundary, thereby construct the perfect minimal subdivision surfaces with any topology of the control mesh and any shaped boundaries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.