Abstract

Biological enzyme-driven degradation of environmental pollutants has attracted widespread attention because it is ecofriendly and highly efficient. Immobilized enzyme technology has emerged as a promising technique in enzymology that addresses the limitations associated with free enzymes. Traditional solid-loaded enzyme substrates are often affected by blockages and restricted substrate accessibility. In this study, we synthesized an efficient heterogeneous pepsin catalyst, named PEP@M-MIL100(Fe), by covalently combining carboxylated ferrite structural expanded metal-organic frameworks with pepsin. This catalyst demonstrated excellent environmental adaptability and remarkable catalytic degradation capabilities. Notably, it rapidly degraded the persistent microplastic pollutant diisononyl phthalate (DINP) within just 150 min, with a removal efficiency of up to 95.88%. Impressively, even after 10 consecutive uses, the catalyst maintained its high performance. We proposed an innovative steady-state heterogeneous enzyme-catalyzed degradation mechanism, i.e., diffusion (D)-absorption (A)-binding (B)-reaction (R)-degradation (D)-link mechanism, which emphasizes the influence of substrate diffusion rates in this process. This work presents the first successful application of pepsin to DINP degradation and offers a sustainable and effective approach for addressing contemporary pollution challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.