Abstract

It has long been pursued to develop polymer microspheres with various special morphologies and structures for better results in applications such as catalysis, drug delivery, and bioscaffolds. However, it remains a challenge to develop a facile method to produce poly(vinyl alcohol) (PVA) microspheres with special morphologies. Herein, a micron-sized marigold-like poly(vinyl alcohol) (CE-PVATPA) microsphere was engineered and fabricated by a feasible strategy, that is, emulsification-cross-linking, freeze-drying, and secondary acetal reaction steps. The morphological evolution of microspheres was systematically investigated under different conditions, and the procedure of constructing PVA microspheres with stabilizing marigold-like structures was proposed. More importantly, a specially structured PVA microsphere microreactor synergistically loading palladium metal nanoparticles (CE-PVATPA@Pd) for the heterogeneous catalyst 4-nitrophenol (4-NP) could be further demonstrated, which indicated high catalytic activity and excellent recyclability. The resultant stabilized fabricating method is promising to provide valuable guidance for the design and fabrication of a high-performance PVA microsphere microreactor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call