Abstract
This study evaluated the D-mannose modified polyethyleneimine-block-polycaprolactone biomacromolecule copolymer micelles (PCL-PEI-mannose) as a targeted delivery of the glucocorticoid dexamethasone (DXM) to lung inflammation tissues and enhances the vehicle for its anti-inflammatory effects. Dexamethasone was encapsulated in the hydrophobic core of cationic polymer micelles by solvent evaporation. The polymeric micelles exhibited sustained-release within 48h, good blood compatibility, and colloidal stability in vitro. The cellular uptake of mannose-modified micelles was higher compared with the non-modified micelles. And drug-loaded targeted micelles could inhibit the production of inflammatory factors in activated RAW264.7 cells. The distribution results indicated that drug-loaded targeted micelles highly improved the lung targeting ability, reduced the wet/dry ratio of injured lung tissue, and relieved the lung inflammation, accompanied by the decrease of inflammatory cell infiltration, myeloperoxidase activity, and inflammatory mediator levels in bronchoalveolar lavage fluid. These findings suggested that PCL-PEI-mannose delivery system could facilitate the lung-specific delivery and inhibit the inflammatory response. Collectively, PCL-PEI-mannose polymer micelles could be used as a potential delivery system for the treatment of acute lung injury (ALI).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.