Abstract

Polymeric semiconductors are crucial candidates for the construction of next-generation flexible and printable electronic devices. By virtue of the successful preparation of monodispersed colloidal solution in orthogonal solvent, poly(3-hexylthiophene) (P3HT) nanofibers are developed into versatile building blocks for nanoelectronics and their compatibilities are verified with photolithographic lift-off technology. Then, the joint efforts from both the bottom-up hierarchical self-assembly and top-down self-alignment technology have led to the realization of lateral asymmetric heterojunctions with resolution better than 1µm. As a result, planar photovoltaic devices incorporating N,N'-dioctyl-3,4,9,10-perylenedicarboximide and P3HT supramolecular nanowires as active components are constructed with the cathode-to-anode distance being tuned from ≈0.1 to 1-2µm. Based on such a novel device configuration, an interesting phenomenon of channel-length-dependent photovoltaic efficiency is observed for the first time, strongly suggesting the impact of near-field light intensity on the performance of nanophotonic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call