Abstract
The conversion of greenhouse gases such as carbon dioxide (CO2) into fuel and high-value chemical materials using solar energy is considered as a viable solution to the environmental pollution and the alleviation of the energy crisis. Herein, a black titanium dioxide/indium oxide S-scheme heterojunction (IO-B-TiO2/In2O3) with a three-dimensional porous inverse opal structure was prepared. In the photocatalytic reduction of CO2, IO-B-TiO2/In2O3 exhibited an excellent CO production rate (251.25 μmol·g−1·h−1), being 8.62 and 1.55 times of pure IO-TiO2 and IO-B-TiO2/In2O3 under non-photothermal conditions, respectively. A series of characterizations and theoretical calculations (DFT) systematically demonstrated that the excellent photocatalytic performance results from the full spectral response of the material, fast charge separation and transport efficiency, and superior photothermal conversion efficiency of the infrared light. This work will provide a promising insight to the design of S-scheme catalysts with outstanding photocatalytic performance via photothermal assistance and the improved solar energy conversion efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.