Abstract

The spatial confinement at metal–zeolite interfaces offers a powerful knob to steer the selectivity of chemical reactions on metal catalysts. However, encapsulating metal catalysts into small-pore zeolites remains a challenging task. Here, we demonstrate an inverse design of metal–zeolite interfaces, “metal-on-zeolite,” constructed by area-selective atomic layer deposition. This inverse design bypasses the intrinsic synthetic issues associated with metal encapsulation, offering a potential solution for the fabrication of task-specific metal–zeolite interfaces for desired catalytic applications. Infrared spectroscopy and several probe reactions confirmed the spatial confinement effects at the inverse metal–zeolite interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.