Abstract

The teosinte Zea nicaraguensis, a wild relative of maize, possesses a flooding tolerance-related trait: the formation of constitutive root aerenchyma under drained (non-flooded) soil conditions. A previous study suggested that the degree of constitutive aerenchyma formation varies within Z. nicaraguensis. The objectives of this study were to construct linkage maps, to determine the marker order in a region of chromosome 4 in which recombination between maize and Z. nicaraguensis is suppressed, and to identify quantitative trait loci (QTL) controlling constitutive root aerenchyma formation in two segregating populations of Z. nicaraguensis. A total of 236 simple sequence repeat (SSR) markers were screened for polymorphism in an S1 population of Z. nicaraguensis. Seventy-one polymorphic SSR markers were assigned to 10 chromosomes, and a linkage map was constructed covering 793.5 cM. In the S1 map, a paracentric inversion was detected on the long arm of chromosome 4; this rearrangement was confirmed in an S1 linkage map of a different Z. nicaraguensis accession. Composite interval mapping analysis in 96 S1 plants revealed QTL for aerenchyma formation on chromosomes 1 (bins 1.06–1.07) and 7 (bin 7.01), explaining 17 and 12% of the total phenotypic variance, respectively. The QTL on chromosome 1 was verified by using 156 S2 plants. Near-isogenic lines exhibiting the presence or absence of the aerenchyma QTL have been developed that should be useful for genetic and physiological analyses of root aerenchyma formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call