Abstract

Infrared light, more than 50% of the solar light energy, is long-termly ignored in the photocatalysis field due to its low photon energy. Herein, infrared-light-responsive photoinduced carriers driver is first constructed taking advantage of pyroelectric effect for enhancing photocatalytic hydrogen evolution. In order to give full play to its role, the photocatalytic reaction is localized on the surface and interface of the composite based on a new semi-immersion type heat collected photocatalytic microfiber system. The system is consisted of distinctive pyroelectric substrate poly(vinylidene fluoride-co-hexafluropropylene (PVDF-HFP), typical photothermal material carbon nanotube (CNT), and representative photocatalyst CdS. The transient photocurrent, electrochemical impedance spectroscopy, time-resolved photoluminescence and pyroelectric potential characterizations indicate that the infrared-light-responsive carriers driver significantly promotes the photogenerated charge separation, accelerates carrier migration, and prolongs carrier lifetime. The photocatalytic hydrogen evolution efficiency is remarkably improved more than five times with the highest average apparent quantum yield of 16.9%. It may open up new horizons to photocatalytic technology for the more efficient use of infrared light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.