Abstract

BackgroundConsolidated bioprocessing (CBP) combines enzyme production, saccharification and fermentation into a one-step process. This strategy represents a promising alternative for economic ethanol production from starchy biomass with the use of amylolytic industrial yeast strains.ResultsRecombinant Saccharomyces cerevisiae Y294 laboratory strains simultaneously expressing an α-amylase and glucoamylase gene were screened to identify the best enzyme combination for raw starch hydrolysis. The codon optimised Talaromyces emersonii glucoamylase encoding gene (temG_Opt) and the native T. emersonii α-amylase encoding gene (temA) were selected for expression in two industrial S. cerevisiae yeast strains, namely Ethanol Red™ (hereafter referred to as the ER) and M2n. Two δ-integration gene cassettes were constructed to allow for the simultaneous multiple integrations of the temG_Opt and temA genes into the yeasts’ genomes. During the fermentation of 200 g l−1 raw corn starch, the amylolytic industrial strains were able to ferment raw corn starch to ethanol in a single step with high ethanol yields. After 192 h at 30 °C, the S. cerevisiae ER T12 and M2n T1 strains (containing integrated temA and temG_Opt gene cassettes) produced 89.35 and 98.13 g l−1 ethanol, respectively, corresponding to estimated carbon conversions of 87 and 94%, respectively. The addition of a commercial granular starch enzyme cocktail in combination with the amylolytic yeast allowed for a 90% reduction in exogenous enzyme dosage, compared to the conventional simultaneous saccharification and fermentation (SSF) control experiment with the parental industrial host strains.ConclusionsA novel amylolytic enzyme combination has been produced by two industrial S. cerevisiae strains. These recombinant strains represent potential drop-in CBP yeast substitutes for the existing conventional and raw starch fermentation processes.

Highlights

  • Consolidated bioprocessing (CBP) combines enzyme production, saccharification and fermentation into a one-step process

  • Amylolytic enzymes from various microbial sources have been used in starch based processes, which has led to amylases

  • The high temperatures required for the initial processes usually account for approximately 30–40% of the total energy required for ethanol production [4]

Read more

Summary

Results

Recombinant Saccharomyces cerevisiae Y294 laboratory strains simultaneously expressing an α-amylase and glucoamylase gene were screened to identify the best enzyme combination for raw starch hydrolysis. The codon optimised Talaromyces emersonii glucoamylase encoding gene (temG_Opt) and the native T. emersonii α-amylase encoding gene (temA) were selected for expression in two industrial S. cerevisiae yeast strains, namely Ethanol RedTM (hereafter referred to as the ER) and M2n. After 192 h at 30 °C, the S. cerevisiae ER T12 and M2n T1 strains (containing integrated temA and temG_Opt gene cassettes) produced 89.35 and 98.13 g l−1 ethanol, respectively, corresponding to estimated carbon conversions of 87 and 94%, respectively. The addition of a commercial granular starch enzyme cocktail in combination with the amylolytic yeast allowed for a 90% reduction in exogenous enzyme dosage, compared to the conventional simultaneous saccharification and fermentation (SSF) control experiment with the parental industrial host strains

Conclusions
Background
Results and discussion
Conclusion
Methods
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call