Abstract
AbstractA series of novel hybrid porous polymers (HPPs), derived from cubic octavinylsilsesquioxane (OVS; [(C2H3SiO1.5)8]) and tetraphenylsilane (TPS), were successfully synthesized through Friedel–Crafts alkylation reaction. The porosities of the HPPs could be tuned by modulating the molar ratio of OVS and TPS. The HPPs showed high porosity, with Brunauer–Emmett–Teller specific surface areas of 518–989 m2 g–1, and total pore volumes of 0.35–0.76 cm3 g–1, as well as narrow pore‐size distributions. For gas sorption application, HPP‐5 possessed a hydrogen uptake of 0.80 wt.‐% at 760 Torr/77 K and a carbon dioxide uptake of 3.31 wt.‐% at 760 Torr/298 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.