Abstract

Hybrid nanocomposites containing Pt nanoparticles (nano-Pt) and poly(3-methylthiophene) (P3MT) nanorods at glassy carbon surfaces have been successfully prepared by use of an in situ cyclic voltammetry (CV) method. Field emission scanning electron microscope (FE-SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltagrams were used to characterize the properties of these nanocomposites. SEM images showed that nano-Pt were located on the surface of P3MT nanorods and that they formed a three-dimensional (3D) porous nanostructure. EIS and CV results demonstrated that these hybrid nanocomposites had good conductivities, and could accelerate the electron-transfer rates of redox ions. From the results of electrochemical oxidation of methanol and nitrite, we observed that this nanocomposite-modified electrode exhibited excellent electrocatalytic activity, which might be useful in biosensors and/or fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.