Abstract
AbstractInspired by the unique characteristics of living cells, the creation of life‐inspired functional ensembles is a rapidly expanding research topic, enabling transformative applications in various disciplines. Herein, we report a facile method for the fabrication of phospholipid and block copolymer hybrid bi‐microcompartments via spontaneous asymmetric assembly at the water/tributyrin interface, whereby the temperature‐mediated dewetting of the inner microcompartments allowed for exocytosis to occur in the constructed system. The exocytosis location and commencement time could be controlled by the buoyancy of the inner microcompartment and temperature, respectively. Furthermore, the constructed bi‐microcompartments showed excellent biocompatibility and a universal loading capacity toward cargoes of widely ranging sizes; thus, the proliferation and temperature‐programmed transportation of living organisms was achieved. Our results highlight opportunities for the development of complex mesoscale dynamic ensembles with life‐inspired behaviors and provide a novel platform for on‐demand transport of various living organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.