Abstract
The respiratory tract is one of the frontline barriers for biological defense. Lung epithelial intercellular adhesions provide protection from bacterial and viral infections and prevent invasion into deep tissues by pathogens. Dysfunction of lung epithelial intercellular adhesion caused by pathogens is associated with development of several diseases, such as acute respiratory distress syndrome, pneumonia, and asthma. To elucidate the pathological mechanism of respiratory infections, two-dimensional cell cultures and animal models are commonly used, although are not useful for evaluating host specificity or human biological response. With the rapid progression and worldwide spread of severe acute respiratory syndrome coronavirus-2, there is increasing interest in the development of a three-dimensional (3D) in vitro lung model for analyzing interactions between pathogens and hosts. However, some models possess unclear epithelial polarity or insufficient barrier functions and need the use of complex technologies, have high cost, and long cultivation terms. We previously reported about the fabrication of 3D cellular multilayers using a layer-by-layer (LbL) cell coating technique with extracellular matrix protein, fibronectin (FN), and gelatin (G). In the present study, such a LbL cell coating technique was utilized to construct a human 3D lung model in which a monolayer of the human lower airway epithelial adenocarcinoma cell line Calu-3 cells was placed on 3D-cellular multilayers composed of FN-G-coated human primary pulmonary fibroblast cells. The 3D lung model thus constructed demonstrated an epithelial-fibroblast layer that maintained uniform thickness until 7 days of incubation. Moreover, expressions of E-cadherin, ZO-1, and mucin in the epithelial layer were observed by immunohistochemical staining. Epithelial barrier integrity was evaluated using transepithelial electrical resistance values. The results indicate that the present constructed human 3D lung model is similar to human lung tissues and also features epithelial polarity and a barrier function, thus is considered useful for evaluating infection and pathological mechanisms related to pneumonia and several pathogens. Impact statement A novel in vitro model of lung tissue was established. Using a layer-by-layer cell coating technique, a three-dimensional cultured lung model was constructed. The present novel model was shown to have epithelial polarity and chemical barrier functions. This model may be useful for investigating interaction pathogens and human biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.