Abstract

Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials have been considered as one of the promising candidates for high energy density lithium-ion battery, but they still suffer from capacity fading and safety caused by structural degradation, insufficient thermal stability and poor storage properties. In the current work, homogeneously Al3+ doped Ni rich cathode with high stable cycling performance and storage stability was constructed via scalable continuous precipitation. With the more homogeneous distribution of Al3+ in the secondary agglomerates, the Ni rich cathode synthesized from Al3+ doped hydroxide precursor showed more perfect sphere, decreased ratio of Ni2+/Ni3+ and Li+/Ni2+ disorder in the internal of agglomerates. The homogeneously Al3+ doped Ni rich LiNi0.8Co0.1Mn0.09Al0.01O2 cathode exhibited much improved cycling performance, with a capacity retention of 78.92% at 1 C rate after 200 cycles, and a capacity retention of 70.0% at 10 C rate after 1000 cycles. Additionally, the homogeneous substitution of Al could significantly prevent the reaction with H2O and CO2 during storage process and improve storage stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call