Abstract

To date, numerous zirconium cluster-based metal-organic frameworks (Zr-MOFs) with attractive physical properties have been achieved thanks to tailorable organic linkers and versatile Zr clusters. Nevertheless, in comparison with the most-used high-symmetry organic linkers, low-symmetry linkers have rarely been exploited in the construction of Zr-MOFs. Despite challenges in predicting the structure and topology of the MOF, linker desymmetrization presents opportunities for the design of Zr-MOFs with unusual topologies and unexpected functionalities. Herein, we report for the first time the construction of two robust Zr-MOFs (IAM-7 and IAM-8) from two pyrrolo-pyrrole-based low-symmetry tetracarboxylate linkers with a rare rhombic shape. The low symmetry of the linkers arises from the asymmetric pyrrolo-pyrrole core and the varying branch lengths, which play a critical role in the structural diversity between IAM-7 and IAM-8 seen from the structural analysis and lead to hydrophilic channels that contain uncoordinated carboxylate groups in the structure of IAM-7. Furthermore, the proton conductivity of IAM-7 displays a high temperature and humidity dependence where the proton conductivity increases from 2.84 × 10-8 S cm-1 at 30 °C and 40% relative humidity (RH) to 1.42 × 10-2 S cm-1 at 90 °C and 95% RH, making it among one of the most conductive Zr-MOFs. This work not only enriches the library of Zr-MOFs but also offers a platform for the design of low-symmetry linkers toward the structural diversity or irregularity of MOFs as well as their structure-related properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.