Abstract

Paraffin waxes (PW) are organic phase change materials (PCMs) that can be potentially applied for the storage/release of low-temperature latent heat and thermal management. However, they have serious liquid leakage and poor thermal conductivity, which greatly restrict their practical application. Although numerous studies have been conducted to address these problems, it is challenging to achieve phase change composites (PCCs) that are characterized by high thermal conductivity and excellent phase change behavior. Herein, we put forward a novel strategy for preparing expanded graphite (EG)/PW binary PCCs with EG loading varying in the range of 10–40 wt%. The method is developed by constructing graphite sheets with high orientation inside the PCCs following compression induction. The highly oriented graphite sheets provide channels for highly efficient heat transfer, which significantly improves the thermal conductivity of the resulting EG/PW PCCs. The in-plane thermal conductivities of the EG/PW PCCs are in the range of 10.7–49.7 W m−1 K−1 under 10–40 wt% EG loading conditions, much larger than those of the previously reported EG/PW PCCs with the same EG content. The EG/PW composites also exhibit excellent compatibility, uniformity, thermostability, reliability, and phase change behaviors. These remarkable properties make the EG/PW composites promising for application in thermal management and heat storage. This work provides an efficient and generic strategy for designing and constructing high-efficiency heat transfer channels within the PCCs using sheet-shaped fillers with high thermal conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.