Abstract
There is a great challenge to fabricate the phosphoric acid-doped polybenzimidazole (PA-PBI) membranes simultaneously having high proton conductivity and good mechanical strength through a simple and scalable preparation approach. In this study, the polymers of intrinsic microporosity (PIMs) with two different molecular weights (MWs) are incorporated into an aryether-type PBI (OPBI) matrix to form some novel alloy membranes containing a special intrinsic “porous” structure. It is the first time to observe the great effect of the PIMs’ MWs on the miscibility and properties of the PBI/PIM alloy membranes, and indicate that an obvious improvement on the performance can be achieved by incorporating PIMs with optimized MWs into OPBI matrix. The PIMs addition can bring a large “free volume” into the alloy membranes, which is expected to enhance the PA doping levels (ADLs) and therefore proton conductivity. It may provide an efficient way to overcome the major obstacles of the existing PA-PBI membranes; that is the mechanical stability of the PBI membranes always sharply decreases with the increase of ADLs. Most importantly, a very high proton conductivity of 313 mS cm−1 can be obtained at 200 °C and a peak power density of 438 mW cm−2 is reached at 160 °C, without humidification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.