Abstract

AbstractMetal‐containing nanoparticles (M‐NPs) in metal/nitrogen‐doped carbon (M‐N‐C) catalysts have been considered hostile to the acidic oxygen reduction reaction (ORR). The relation between M‐NPs and the active sites of metal coordinated with nitrogen (MNx) is hard to establish in acid medium owing to the poor stability of M‐NPs. Herein, we develop a strategy to successfully construct a new FeCo‐N‐C catalyst containing highly active M‐NPs and MN4 composite sites (M/FeCo‐SAs‐N‐C). Enhanced catalytic activity and stability of M/FeCo‐SAs‐N‐C is shown experimentally. Calculations reveal that there is a strong interaction between M‐NPs and FeN4 sites, which can favor ORR by activating the O−O bond, thus facilitating a direct 4 e− process. Those findings firstly shed light on the highly active M‐NPs and FeN4 composite sites for catalyzing acid oxygen reduction reaction, and the relevant reaction mechanism is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.