Abstract

The reasonable and logical construction of electrode materials along with greater electrochemical features and solid architectural design is an effective strategy for boosting the electrochemical performance of supercapacitors. In this paper, Ti3C2Tx MXene/CuS composites have been synthesized using an electrostatic attraction connection of negatively charged 2D few-layered Ti3C2Tx MXene sheets with positively charged CuS nanoparticles and are investigated as an asymmetric supercapacitor active material. The addition of MXene enhances the conductivity and specific surface area of the MXene/CuS electrode compared to their individual components. The as-prepared MXene/CuS electrode exhibits a high specific capacity (1541.6C g−1 (2569.3 F g−1)) at 1 A g−1 and an excellent cycle performance with 93.5 % capacity retention after 10,000 cycles. Furthermore, Fe2O3 nanoparticles/reduced graphene oxide (rGO) nanosheets (Fe2O3@rGO) composite electrode is also produced. The designed Fe2O3@rGO negative electrode with a wide operation voltage window of 1.1 V can deliver a capacity of 255.6C g−1 at 1 A g−1. Ultimately, the MXene/CuS//Fe2O3@rGO device displays energy density of 74.1 Wh kg−1 and power density of 849.8 W kg−1. In addition, the ASC shows excellent cycling stability of 91.3 % capacity retention after 10,000 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call