Abstract

Very high surface area activated carbons (AC) are synthesized from pine cone petals by a chemical activation process and subsequently evaluated as an electrode material for supercapacitor applications in a nonaqueous medium. The maximum specific surface area of ∼3950 m(2) g(-1) is noted for the material treated with a 1:5 ratio of KOH to pine cone petals (PCC5), which is much higher than that reported for carbonaceous materials derived from various other biomass precursors. A symmetric supercapacitor is fabricated with PCC5 electrodes, and the results showed enhanced supercapacitive behavior with the highest energy density of ∼61 Wh kg(-1). Furthermore, outstanding cycling ability is evidenced for such a configuration, and ∼90 % of the initial specific capacitance after 20,000 cycles under harsh conditions was observed. This result revealed that the pine-cone-derived high-surface-area AC can be used effectively as a promising electrode material to construct high-energy-density supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.