Abstract

Random peptide libraries displayed on the surface of filamentous bacteriophage are widely used as tools for the discovery of ligands for biologically relevant macromolecules, including antibodies, enzymes, and cell surface receptors. Phage display results in linkage of an affinity-selectable function (the displayed peptide) to the DNA encoding that function, allowing selection of individual binding clones by interative cycles of in vitro panning and in vivo amplification. Critical to the success of a panning experiment is the complexity of the library: the greater the diversity of clones within the library, the more likely the library contains sequences that will bind a given target with useful affinity. A method for construction of high-complexity (≱109 independent clones) random peptide libraries is presented. The key steps are highly efficient binary ligation under conditions where the vector is relatively dilute, with only a modest molar excess of insert, followed by efficient electrotransformation into Escherichia coli. Library design strategies and a protocol for rapid sequence characterization are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.